A hierarchical particle swarm optimizer with latin sampling based memetic algorithm for numerical optimization
نویسندگان
چکیده
Memetic algorithms, one type of algorithms inspired by nature, have been successfully applied to solve numerous optimization problems in diverse fields. In this paper, we propose a new memetic computing model, using a hierarchical particle swarm optimizer (HPSO) and latin hypercube sampling (LHS) method. In the bottom layer of hierarchical PSO, several swarms evolve in parallel to avoid being trapped in local optima. The learning strategy for each swarm is the well-known comprehensive learning method with a newly designed mutation operator. After the evolution process accomplished in bottom layer, one emetic algorithm article swarm optimizer atin hypercube sampling omprehensive learning ylindricity particle for each swarm is selected as candidate to construct the swarm in the top layer, which evolves by the same strategy employed in the bottom layer. The local search strategy based on LHS is imposed on particles in the top layer every specified number of generations. The new memetic computing model is extensively evaluated on a suite of 16 numerical optimization functions as well as the cylindricity error evaluation problem. Experimental results show that the proposed algorithm compares favorably with eral conventional PSO and sev
منابع مشابه
A NEW MEMETIC SWARM OPTIMIZATION FOR SPECTRAL LAYOUT DESIGN OF BRACED FRAMES
For most practical purposes, true topology optimization of a braced frame should be synchronized with its sizing. An integrated layout optimization is formulated here to simultaneously account for both member sizing and bracings’ topology in such a problem. Code-specific seismic design spectrum is applied to unify the earthquake excitation. The problem is solved for minimal structural weight un...
متن کاملMMDT: Multi-Objective Memetic Rule Learning from Decision Tree
In this article, a Multi-Objective Memetic Algorithm (MA) for rule learning is proposed. Prediction accuracy and interpretation are two measures that conflict with each other. In this approach, we consider accuracy and interpretation of rules sets. Additionally, individual classifiers face other problems such as huge sizes, high dimensionality and imbalance classes’ distribution data sets. This...
متن کاملA new Reinforcement Learning-based Memetic Particle Swarm Optimizer
Developing an effective memetic algorithm that integrates the Particle Swarm Optimization (PSO) algorithm and a local search method is a difficult task. The challenging issues include when the local search method should be called, the frequency of calling the local search method, as well as which particle should undergo the local search operations. Motivated by this challenge, we introduce a ne...
متن کاملOptimization of UWB Receiver using the Improved Memetic Algorithm in WBAN
A novel method for Ultra Wideband (UWB) receiver design in Wireless Body Area Network (WBAN) is proposed in this study. The method is based on the Improved Memetic-Algorithm (IMA), with the output Signal-toNoise Ratio of the receiver (SNRout) is optimized. By relating the target SNRout to the parameters of main components, including Low Noise Amplifier (LNA), mixer and base-band Low Pass Filter...
متن کاملMultibeam Antennas Array Pattern Synthesis using Hybrid Particle Swarm Optimiser with Breeding and Subpopulations Algorithm
In this paper a new effective optimization algorithm called hybrid particle swarm optimizer with breeding and subpopulation is presented. This algorithm is essentially, as PSO and GA, a population-based heuristic search technique, now in use for the optimization of electromagnetic structures, modeled on the concepts of natural selection and evolution (GA) but also based on cultural and social r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Appl. Soft Comput.
دوره 13 شماره
صفحات -
تاریخ انتشار 2013